IoT in Healthcare: A New Era of Connected Medical Devices
How is IoT in healthcare revolutionizing patient care with connected medical devices?
Officially coined in 1999 by Kevin Ashton, the concept of the Internet of Things has been through over two decades of progression until it eventually accelerates as an inevitable part of modern daily life as well as business operation and other industry sectors with a wide range of IoT applications nowadays. The disruption of IoT adoption has no sign of slowing down its pace anytime soon with the constant evolution of technologies, and the market for the Internet of Things is projected to peak at 14.4 billion active connected devices by 2022, which is 18% higher than the previous year. It does not stop there; the growth is expected to go on, and by 2025, the total number of connected IoT devices is estimated to be around 27 billion. And guess what? In such a data-driven world as today, any raw data can drive value. Therefore, the massive amount of IoT data probably brings in value if it is captured, processed, and analyzed properly. Otherwise, it will end up wasted without data analytics. That is how IoT data analytics shows up, enters, and changes the game.
What is IoT data analytics? As its name suggests, Internet of Things (IoT) data analytics, or simply IoT analytics is the act of analyzing data generated and collected from IoT devices by utilizing a specific set of data analytics tools and techniques. The true idea behind IoT data analytics is to turn vast quantities of unstructured data from various devices and sensors within the Internet of Things ecosystem, which is heterogeneous, into valuable and actionable insights for driving sound business decision-making and further data analysis. Furthermore, IoT analytics enables identifying the patterns in data sets, including both current states and historical data, which can be utilized to make predictions and adjustments about future events.
There is no doubt that the deployment of connected devices and sensors has increased exponentially in various industries in recent years, which has driven the development of IoT data analytics to a great extent. IoT analytics is being widely used in various industries ranging from healthcare, retail, and eCommerce to manufacturing, transportation, and more.
As IoT analytics are performed to gather insights that serve different purposes, it can be broken down into four primary types:
Descriptive Analytics
Descriptive IoT analytics mainly focus on what happened in the past. The historical data collected from devices are processed and analyzed to generate a report that describes what took place, when it occurred, and how often it did. This type of IoT analysis is useful for providing answers to specific questions about the behavior of things or people and can also be used to detect any anomalies.
Diagnostic Analytics
Different from descriptive IoT analytics, diagnostic analytics go one step further to answer the question of why something happened by drilling down into the data to identify the root cause of a specific issue. Diagnostic analytics make use of techniques like data mining and statistical analysis to uncover hidden patterns and relationships in data that can offer actionable insights into the causes of specific problems.
Predictive Analytics
As its name suggests, predictive IoT analytics is used to predict future events by analyzing historical data and trends. This type of analytics makes use of various statistical and machine learning algorithms to build models that can be used for making predictions about future events. This type of analytics plays a significant role in supporting business decisions related to inventory management, demand forecasting, etc.
Prescriptive Analytics
Prescriptive IoT analytics is the most advanced type of IoT analytics that not only predicts what will happen in the future but also provides recommendations on what should be done to achieve the desired business outcomes. This type of analytics makes use of optimization algorithms to identify the best course of action that should be taken to achieve a specific goal.
Speaking of massive amounts of data, you are being reminded of big data analytics, aren’t you? Do they have any sort of connections? Actually, people often find IoT and big data analytics confused by each other. The only distinction between them is the data source; while big data analytics deals with data sets from a broad range of streams and sources, IoT analytics only collect and analyze data generated by connected IoT devices and sensors. So, we can say that IoT data analytics is a subset of big data analytics that helps make sense of data originating from connected devices in the ecosystem of the Internet of Things. And as a result, IoT analytics can be used to solve various issues and problems that cannot be addressed by big data analytics alone, such as real-time streaming data analysis, near-time processing, edge computing, predictive maintenance, etc. Therefore, the combination of IoT and big data analytics can be used to gain a competitive edge and drive business value.
Have you ever heard of the term IIoT? Or it is also known as Industrial IoT. It is an application of IoT technologies in the manufacturing and other industrial sectors with the aim of achieving better operational efficiency as well as improving safety while reducing downtime and production costs. IIoT data analytics, which is a branch of IoT analytics, is used to process and analyze data generated by IIoT devices and sensors to deliver valuable insights for optimizing industrial processes, maintenance scheduling, and logistics management on manufacturing equipment, pipelines, weather stations, smart meters, delivery trucks and other types of machines.
The IIoT applications are not only limited to the manufacturing sector. In fact, the future of IIoT is booming; they can be seen in many other fields such as healthcare, retail, transportation, energy, and so on.
From its humble beginnings, IoT data analytics has come a long way to become mainstream. If business owners embrace data analytics because of its tangible benefits, then it is more certain than ever that they are about to do the same to IoT data analytics in order to make the most of the data assets and empower their business decisions.
The benefits of IoT analytics are numerous, and they can be classified into two main categories: business benefits and technical benefits. Let’s have a look at each of them in detail.
As IoT expands its reach to more industries, the demand for IoT data analytics roughly increases accordingly. A lot of companies are on their way to IoT adoption, but not all of them know how to implement it properly. What is the best way to implement IoT analytics within an organization so that it can be done efficiently? To help you better imagine the procedure of IoT analytics implementation within an organization, we will lead you through some best practices that can result in a smooth and effective process.
IoT data analytics has been traveling so far since its inception, and it has become an integral part of many businesses. If you would like to make the most of your data assets and empower your business decisions, then it is time to embrace IoT data analytics. IoT data analytics can help businesses in a number of ways as long as you know how to do it right.
How is IoT in healthcare revolutionizing patient care with connected medical devices?
Thinking of implementing an IoT system into your business? From enhanced security to better customer service, here’s how IoT technology can help you grow.
This beginner-friendly guide explains everything you need to know about IoT architecture!
How is smart technology revolutionizing vehicles and driving experiences? Explore the impact of IoT in automotive industry.
Discover how the enormous influence of IoT in telecommunications can enable new services, increase efficiency, and improve the overall customer experience.